Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Active fluids have potential applications in micromixing, but little is known about the mixing kinematics of such systems with spatiotemporally-varying activity. To investigate, UV-activated caged ATP was used to activate controlled regions of microtubule-kinesin active fluid inducing a propagating active-passive interface. The mixing process of the system from non-uniform to uniform activity as the interface advanced was observed with fluorescent tracers and molecular dyes. At low Péclet numbers (diffusive transport), the active-inactive interface progressed toward the inactive area in a diffusion-like manner and at high Péclet numbers (convective transport), the active-inactive interface progressed in a superdiffusion-like manner. The results show mixing in non-uniform active fluid systems evolve from a complex interplay between the spatial distribution of ATP and its active transport. This active transport may be diffusion-like or superdiffusion-like depending on Péclet number and couples the spatiotemporal distribution of ATP and the subsequent localized active stresses of active fluid. Our work will inform the design of future microfluidic mixing applications and provide insight into intracellular mixing processes. *T.E.B., E.H.T., J.H.D., and K.-T.W. acknowledge support from the National Science Foundation (NSF-CBET-2045621). C.-C. C. was supported through the National Science and Technology Council (NSTC), Taiwan (111-2221-E-006-102-MY3). M.M.N. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0022280).more » « less
-
Active fluids with spatiotemporally varying activity have potential applications to micromixing; however previously existing active fluids models are not prepared to account for spatiotemporally-varying active stresses. Our experimental work used UV-activated caged ATP to activate controlled regions of microtubule-kinesin active fluid inducing a propagating active-passive interface. Here, we recapitulate our experimental results with two models. The first model redistributes an initial ATP distribution by Fick's law and translates the ATP distribution into a velocity profile by Michaelis-Menton kinetics. This model reproduces our experimental measurements for the low-Péclet number limit within 10% error without fitting parameters. However, as the model is diffusion based, it fails to capture the convective based superdiffusive-like behaviour at high Péclet numbers. Our second model introduces a spatiotemporally varying ATP field to an existing nematohydrodynamic active fluid model and then couples the active stresses to local ATP concentrations. This model is successful in qualitatively capturing the superdiffusive-like progression of the active-inactive interface for high Peclet number (convective transport) experimental cases. Our results show that new model frameworks are necessary for capturing the behaviour of active fluid with spatiotemporally varying activity. *T.E.B., E.H.T., J.H.D., and K.-T.W. acknowledge support from the National Science Foundation (NSF-CBET-2045621). C.-C. C. was supported through the National Science and Technology Council (NSTC), Taiwan (111-2221-E-006-102-MY3). M.M.N. was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0022280).more » « less
-
Abstract Active fluids have applications in micromixing, but little is known about the mixing kinematics of systems with spatiotemporally-varying activity. To investigate, UV-activated caged ATP is used to activate controlled regions of microtubule-kinesin active fluid and the mixing process is observed with fluorescent tracers and molecular dyes. At low Péclet numbers (diffusive transport), the active-inactive interface progresses toward the inactive area in a diffusion-like manner that is described by a simple model combining diffusion with Michaelis-Menten kinetics. At high Péclet numbers (convective transport), the active-inactive interface progresses in a superdiffusion-like manner that is qualitatively captured by an active-fluid hydrodynamic model coupled to ATP transport. Results show that active fluid mixing involves complex coupling between distribution of active stress and active transport of ATP and reduces mixing time for suspended components with decreased impact of initial component distribution. This work will inform application of active fluids to promote micromixing in microfluidic devices.more » « less
An official website of the United States government

Full Text Available